

Impurities Diffusion Across Private Flux Region Toward X-point During ITER Elms

I. Konkashbaev and A. Hassanein

Presented at ALPS Workshop
December 5-7, 2004
Livermore, CA

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

CONTENTS

- ITER plasma parameters at normal operation and ELMs
- Cloud of mixture of incoming DT plasma
 and vaporized carbon plasma
- Dynamics of carbon plasma in the Private Flux Region
- Summary

I. ITER Plasma Parameters at Normal Operation and ELMs

Used parameters:

Normal operation - Physics Phase

- R = 6 m, a=2 m, k=2, δ =0.24
- $B_{\theta}=5 \text{ T}$, $I_{\theta}=22 \text{ MA}$, $Z_{\text{eff}}\approx 1 \text{ (in project- } Z_{\text{eff}}\approx 1.5)$,
- $n_e = 10^{14} \text{ cm}^{-3}$, $T_e = T_i = T_0 = 10-20 \text{ keV}$,
- $Q_{thermal} = Q_0 = 1-2 GJ$,

ITER ELMs

- The ELM instability results from an overlap of many MHD modes.
- There are many types of ELMs varying from machine to machine (up to 5 in the NSTX).
- Plasma energy losses during ELMs varies up to (10-30)%.
- May be only pedestal plasma is expelled during ELMs: if MHD instability propagates into the hot core (inside the thermal barrier) it results in a disruption.
- Thus, energy, Q_{ELM}, and particles, N_{ELM}, expelled during ELM with magnitude, ξ, is assumed as loss of outer regions containing the given Q_{ELM} and N_{ELM}.

Modeling Stages in HEIGHTS

Hassanein (ANL)

What part of core plasma comes to SOL during ELM?

The energy, Q_{ELM}, and particles, N_{ELM}, expelled out during ELM with magnitude, ξ, is assumed as loss of outer ring containing the given Q_{ELM} and NELM

Space distribution at the tokamak edge

II. Cloud of mixture of coming DT plasma and vaporized carbon plasma

The main consequence of ELMs development:

- plasma coming from the pedestal has low temperature (T≈1 keV),
- thus cloud above the divertor plate surface consists mostly from DT plasma
- This DT cloud is kept the vaporized carbon plasma nearby the surface

Beryllium Erosion & Expansion

III. Dynamics of Carbon Plasma in the Private Flux Region

Assumption:

 Carbon plasma is lost due to diffusion across the Separatrix into the Private Flux Region (PFR)

Impurity Transport

- Diffused carbon plasma is well magnetized and its dynamic can be described by the Hall approximation assuming quasistationary motion with velocity, V_⊥. Substituting V_⊥ in mass conservation equation one can obtain nonlinear diffusion equation.
- Mass conservation law:

$$\frac{\partial n}{\partial t} + div \left(n\vec{V}_{\perp} \right) = 0, \qquad V_{\perp} = -\frac{4\pi D_{\perp}}{B^2} \nabla_{\perp} P, \qquad D_{\perp} = \frac{c^2}{4\pi \sigma_{\perp}}$$

$$\frac{\partial n}{\partial t} = div \left(n\chi \vec{\nabla} n \right) \quad - \quad \text{dim} \, ensionless \, form$$

where coefficient, χ , depends on temperature.

Energy conservation law:

$$\frac{d\varepsilon}{dt} + P div \vec{V} = - div (k \vec{\nabla} T) + Q_{joule} + Q_{rad}$$

Density at the PFR

Propagation of carbon plasma in the PFR

Density on time(ms)

- Carbon plasma propagates with sharp front because effective diffusion coefficient depends on density
 - -diffusion is nonlinear

Propagation of carbon plasma front with n=10¹⁴ cm⁻³

Density front,
$$X_{14}$$
, with $n=10^{14}$ cm⁻³

IV. Summary

- 1. The plasma cloud during ELMs consists mostly of DT plasma.
- 2. This DT plasma with high temperature (T_{DT} = 40-60 eV) confine carbon plasma below with lower temperature (T_{C} =10-20 eV).
- 3. The carbon plasma can diffuse across Separatrix into the private flux region and be the main mechanism of the carbon vapor leakage.
- 4. Carbon impurities reaches the X-point in time of 100 ms much longer than ELMs time of 0.1-1 ms and could penetrate into core plasma.
- 5. Contamination of core plasma is governed by pumping and absorption of vapor plasma by components in PFR.
- 6. Need more detail analysis for the interaction of eroded material with PFR materials, pumping, and bulk plasma.

